Indoor Environmental Quality (IEQ) is a crucial issue in school buildings, because of the conditions that pupils and students are exposed to. From this assumption, potentialities of retrofit actions with Nearly Zero-Energy Building (NZEB) targets were analyzed in existing school buildings, focusing on the impact of such measures of IEQ. Numerical analyses in a transient regime for a typical school building were carried out to assess the impacts on the thermal comfort and Indoor Air Quality (IAQ). The study took into account several building configurations and three reference cities. The results showed severe overheating risks in retrofitted schools: the operative temperature increased by several degrees with respect to the existing configuration, leading to thermal discomfort for a relevant part of the observation period. Passive techniques, namely external solar protection devices and night ventilative cooling, were applied to assess their mitigation potential. Results showed that the combination of the two solutions restored the pre-retrofit performance. CO2 levels were found to be too high for naturally ventilated buildings, regardless of the building configuration; acceptable levels might be reached only with long opening times of windows, which are unrealistic for real building operation.
On the built-environment quality in nearly zero-energy renovated schools: Assessment and impact of passive strategies / Zinzi, M.; Pagliaro, F.; Agnoli, S.; Bisegna, F.; Iatauro, D.. - In: ENERGIES. - ISSN 1996-1073. - 14:10(2021), pp. 1-18. [10.3390/en14102799]
On the built-environment quality in nearly zero-energy renovated schools: Assessment and impact of passive strategies
Bisegna F.;
2021
Abstract
Indoor Environmental Quality (IEQ) is a crucial issue in school buildings, because of the conditions that pupils and students are exposed to. From this assumption, potentialities of retrofit actions with Nearly Zero-Energy Building (NZEB) targets were analyzed in existing school buildings, focusing on the impact of such measures of IEQ. Numerical analyses in a transient regime for a typical school building were carried out to assess the impacts on the thermal comfort and Indoor Air Quality (IAQ). The study took into account several building configurations and three reference cities. The results showed severe overheating risks in retrofitted schools: the operative temperature increased by several degrees with respect to the existing configuration, leading to thermal discomfort for a relevant part of the observation period. Passive techniques, namely external solar protection devices and night ventilative cooling, were applied to assess their mitigation potential. Results showed that the combination of the two solutions restored the pre-retrofit performance. CO2 levels were found to be too high for naturally ventilated buildings, regardless of the building configuration; acceptable levels might be reached only with long opening times of windows, which are unrealistic for real building operation.File | Dimensione | Formato | |
---|---|---|---|
Zinzi_On the built-environment_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.34 MB
Formato
Adobe PDF
|
2.34 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.